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We study theoretically two types of kinetic models of a binary alloy at zero 
temperature. In the phase separation model, a nearest-neighbor interchange can 
occur if the fraction of AB bonds (where A and B denote distinct species of 
atoms in a binary alloy) is thereby decreased. The crystallization model is 
defined by the opposite evolution rule. We examine these models in one dimen- 
sion and obtain exact analytical results for the densities of domain walls, defects, 
and for a number of other correlators. Nonergodic zero-temperature dynamics 
leads to final states strongly dependent on initial conditions. For generalized 
models, in which nearest-neighbor interchange is also performed if the portion 
of AB bonds is not changed, a very rich kinetic behavior is observed. 

KEY WORDS: Phase separation; crystallization; binary alloy; nonergodic 
processes. 

1. I N T R O D U C T I O N  

In this paper we examine a collection of interacting particle systems, 
motivated by the study of binary alloys. We consider a zero-temperature 
dynamics on a uniform one-dimension~al lattice whose atoms exchange in a 
nearest-neighbor pairs. Models are formulated as computer  games whose 
evolution to stat ionary states is strongly dependent  on their initial states. 
The latter are prepared by generating sequences of atoms of species A and 
B. The dynamics of these models manifestly conserves the order parameter. 
The asymptotic long-time behavior of the phase separation model in which 
a nearest-neighbor interchange can occur if the fraction of AB bonds is 
thereby decreased was studied numerically by Meakin and Reich c1'21 for 
cubic lattices of various dimensions ( d =  1-5) and then by Frisch and 
co-workers numerically for the Bethe lattice ~31 and analytically in d =  1. (3"4) 
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Some analytical results concerning the approach to equilibrium were found 
by Elskens and Frisch) 41 

In this study we give a description of the kinetic behavior of the phase 
separation model and the dual crystallization model, based on analytical 
solutions of one-dimensional models. Besides the intrinsic interest of 
these models, they also exemplify a physically relevant class of nonergodic 
processes whose simplest properties (e.g., the degree of phase separation) 
cannot be found by equilibrium considerations. Similar properties are also 
typical for models of glass. Therefore, although we investigate simple one- 
dimensional models, time-dependent analytical solutions are interesting 
since they provide some understanding of nonergodic dynamic processes. 

The outline of this paper is as follows. In Section 2, we describe the 
evolution of the simplest one-dimensional phase separation model to its 
stationary state. We focus on sequences of atoms of alternating species, 
write down a master equation for the densities of these alternating clusters, 
solve this equation exactly for factorizable initial conditions, and then 
discuss in detail the evolution for the most natural initial conditions, that 
is, for the alternating and the random one. Exact results clearly reveal the 
crucial role pla~,ed by initial conditions. Some generalized phase separation 
models are discussed in Section 3. The mathematical analysis of these inter- 
acting particle systems is remarkably simple--by mapping the generalized 
phase separation model onto a special version of the random sequential 
adsorption (RSA) process one can use well-established procedure and solve 
the model exactly in one dimension. In Section 4, we describe parallel 
results for the crystallization model. In Section 5, we investigate the 
crystallization model in which the the nearest-neighbor interchange is also 
performed if the portion of AB bonds is kept fixed. In addition to the 
deposition events (on the language of the RSA), this model allows also the 
diffusion events. The interplay between deposition and diffusion processes 
leads to a rich kinetic behavior strongly dependent on initial conditions. 
Finally, conclusions appear in Section 6. 

2. P H A S E  S E P A R A T I O N  M O D E L  

Our model is an irreversible one-dimensional phase separation model 
with nearest-neighbor particle exchange dynamics. Each site of the infinite 
linear lattice is occupied by one A or one B particle. Two neighbor 
particles of different species can be exchanged if the number of interfaces 
(i.e., AB bonds) is thereby decreased. All possible exchange events are 
assumed to be independent with an exponent waiting time. Thus we have 
the Kawasaki-like particle exchange dynamics which conserves the total 
number of particles of both species. Since two neighbors exchange if and 
only if the total number of interfaces is decreased by a maximum amount 
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(equal to 2) by this exchange event, we see that the present model is just 
the zero-temperature Kawasaki dynamics. Indeed, at zero temperature the 
exchange event which leads to the maximum decreasing of the number of 
interfaces has the infinite Boltzmann factor compared to the exchange 
events. 

Denote by XN a sequence of N atoms of the same species, N A's or N 
B's, and by YM a sequence of M atoms of alternating species. Any sequence 
of A's and B's is then uniquely (up to substituting of all A's and B's) 
described by a sequence of the form . . .  X 'NI  YM, f f (N  2 YM., .... which Ni/> 2 and 
Mi >/0 to avoid ambiguities. For instance, 

... AABABBBAAA . . . . . . .  X2 Y2 X3 Yo X3... 

From the definition of the model one finds that the exchange events 
take place only inside sequences YM. Furthermore, the most interesting 
quantities, such as the densities of domain walls, defects, and interfaces, 
may be immediately extracted from the densities of YM'S. Therefore in the 
following we focus on the behavior of the densities of alternating clusters, 
although other correlators, e.g., the densities of clusters of the same species, 
XN, are also of interest. 

Consider now the evolution of alternating clusters. The definition of 
the model implies that: 

(i) XN, YoXN2 cannot evolve further, i.e., a domain wall (...AABB...) 
is steady. 

(ii) XN, Y~XN: cannot evolve further, i.e., a defect (...AABAA...) is 
steady, too. 

(iii) XN YpXM can evolve in P -  1 equally likely ways: 

XN+ 1 YoX2 YP 3XM 
X'NYpXM=> XNYQX, YoX~Yp_Q_4X g ( 0 < Q < P - 4 )  

XNYe ~X, YoXM+I 

The stationary state is thus a sequence of XN'S, Yo'S, and YI'S only. 
Both the density of domain walls and that of defects grow with time and 
a full phase separation cannot be achieved. 

Let us denote by YM(t) a portion of YM'S at time t. Then a master 
equation for this problem has the following form: 

d 
Y o = Y 2 +  ~ ( K + I ) Y K  (2.1a) 

K>~3 

d 
N--~tYN=--(N--1)YN +2 ~ YN+K, N > 0  (2.1b) 

K>~3 

All terms in Eqs. (2.1) are simply deduced from the evolution law (iii). 
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To solve Eq. (2.1b), we make  the ansatz 

Y N = A B  N- l ,  N>~I (2.2) 

where A(t)  and B(t)  are functions of time to be found. By inserting (2.2) 
into (2.1), we reduce the infinite system of Eq.(2.1b) to the finite one 

d 
~-~ A = 2AB3(1 -- B ) - '  (2.3a) 

d 
- -  B = - B  (2,3b) 
dt 

while Eq. (2.1a) becomes 

d 
at t o =  AB 

1 + 2B - 2B 2 

( 1 - B) z 
(2.4) 

Thus, if initial data  are in agreement  with the ansatz (2.2), we must  solve 
Eqs. (2.3) and (2.4). Such is the case for the alternating initial sequence 
Y~. We have the following initial data: 

Y N ( 0 ) = 0  foral l  N>~0, lim ~ N Y N ( t ) = I  (2.5) 
t ~ O  N>~l 

Using the relation ~-'~N~> 1 N Y N = A ( 1  - B )  -z,  we deduce from Eq. (2.5) 

A ( 0 ) =  0, B(0) = 1, lira A(1 - B ) - Z =  1, Yo(0) = 0 (2.6) 
t ~ 0  

and find the exact solution 

A(t)  = [ 1 - exp( - t)] '- e x p [ e x p ( - 2 t )  + 2 exp( - t ) -  3] 

B(t) = exp( - t) (2.7) 

1 
Yo(t) = I.  du (1 + 2 u - 2 u Z ) e x p ( u 2 + 2 u - 3 )  

xp( z) 

The degree of phase separat ion in the model may  be measured by the 
fraction p(t) o f " b a d "  bonds (A-B):  

p =  ~ ( N + I ) Y u = Y o + A ( 2 - B ) ( I - B )  - 2  

N~>0  
(2.8) 

At the stat ionary state, t = ~ ,  we find the following values for the density 
of domain  walls Yo, defects Y~, and bad bonds p: 
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Yo(oo)=0.351323887. . .  

Y I ( ~ )  = 0.049787068... 

p ( ~ ) = 0 . 4 5 0 8 9 8 0 2 4 . . .  

(2.9) 

As a second example,  we consider a r andom chain where the probabil-  
ity of meeting an A a tom and a B a tom is equal. Here initial data  are again 
compatible  with the ansatz (2.2). Simple combinator ics  gives 

Yu(O) = 2 -  u -  3 

o r  

A(0) = 1/16, B(0) = 1/2, Yo(0) = 1/8 (2.10) 

The exact solution for these initial data  is 

A ( t ) =  �88 -- � 89  2 e x p [ e x p ( - - 2 t ) +  ~ e x p ( - t ) - -  ~] 

B(t )  = �89  

fo' du (1 + 2u - 2u 2) exp(u 2 + 2u - ~) Yo( t ) = } + �88 xp( ,)/2 

(2.11) 

At the s tat ionary state we have 

Yo(~ )  = 0.219704245... 

Yl(oo) = 0.071631199... 

p(oo) = 0.36296644... 

(2.12) 

Compar i son  of (2.9) and (2.12) shows that  the evolution to the final 
s tat ionary state is strongly dependent  on the initial state, i.e., an asymptot ic  
distribution cannot  be evaluated from the single requirement of sta- 
tionarity. The system therefore has an infinite number  of s tat ionary states. 
So, the kinetic model is not ergodic/3'4~ 

It is worth pointing out that  analytical solutions to the master  equa- 
tion (2.1) can be also found for some cases when the ansatz (2.2) becomes 
invalid. One natural  such example is provided by the binary alloy with 
different initial "concentrations and random initial conditions. Denot ing 
initial concentrat ions of A and B species by p and q, respectively 
(p + q = 1), one finds distinct expressions for even and odd YN(0), namely 

Y 2 u ( O ) = 2 ( p q )  N+z, Y 2 N + t ( O ) = ( p 3 + q 3 ) ( p q )  N+t (2.13) 
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However, the initial data are in agreement with the generalized version of 
the ansatz (2.2) 

Y2u+I =AJ B2N, Y2N+2=Ao BzN+I, N~> 1 (2.14) 

By inserting [2.14) into the master equation one can find a closed system 
of equations for functions A o(t), A ~ (t), B(t), and Yo(t) and then solve these 
equations. We omit these explicit but rather cumbersome results. 

3. G E N E R A L I Z E D  P H A S E  S E P A R A T I O N  M O D E L S  

In this section we discuss some generalized one-dimensional phase 
separation models. First, we describe a class of models amenable to exact 
solvability like the simple model of Section 2. For this purpose, it is 
convenient to use a new representation of a lattice occupied by A and B 
atoms. Let us denote any "bad" bond (i.e., A-B or B-A) by 0 and any 
"good" bond (i.e., A-A or B-B) by 1. An arbitrary sequence of A's and B's 
is then uniquely (up to substituting of all A's and B's) described by a 
sequence of O's and l's. For instance, 

... AABABBAABBB . . . . . . .  1000101011 ... 

The evolution law for the phase separation model of Section 2 can be 
depicted as follows: 

(1.PS) Any 000-triplet can evolve, 0 0 0 ~  101. 

(2.PS) Other triplets cannot evolve further. 

One can interpret O's and l's as vacant and filled sites, respectively, 
and a process of spinodal decomposition as a version of a random sequen- 
tial adsorption (RSA) process. In such processes one attempts to place 
immobile objects at random on a lattice in such a way that they do not 
overlap. In our model two vacant next-neighbor sites, divided by a vacant 
site, are filled simultaneously. Because of the condition of immobility, RSA 
configurations differ from their equilibrium counterparts. 

The RSA process is of interest in a variety of fields, including statisti- 
cal, 15'61 chemical, 17'8~ and biological physicsJ 9'1~ Exact results are sparse 
and largely confined to one-dimensional systems and lattices with tree 
properties. For one-dimensional RSA, several authors have derived the 
analytical expressions for the coverage versus time ~-~3~ and for more 
complex correlation functions. ~4 ~6~ The special solvable case in which 
single sites fill randomly with nearest-neighbor cooperative effects has been 
studied extensively. 
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These studies suggest that a generalization of our RSA model taking 
into account some cooperative effects must be tractable, too, The simplest 
such generalization permits us to take into account boundary sites of a 
triplet. We modify the rule (1.PS) as follows: 

(1.PS)' Any triplet 000 evolves to 101 with the rates 20, 2~, and 22 
depending on a number of vacant sites on its boundary, e.g., 000=,01010 
with the rate 20, etc. 

The rule (2.PS) remains unchanged. 
To display the solvability of a model defined by the rules (1.PS)' and 

(2.PS), we return to the X Y  representation of a lattice. Then the master 
equation for this problem has the following form: 

d 
d~ Y ~  ~ YK+42~Y3+2o ~ (K--1)YK (3.la) 

K~>4 K~>4 

d 
dt Y'=221 Y4+22o ~ YK (3.1b) 

K~>5 

d 
clt Yz=-22y2+22~ Y5+22o ~ YK (3.1c) 

K>~6 

d 
dl--Z, YN =-2o(N-3)YN-22,YN+22t  Y,v+3+22o ~ Yx+N (3.1d) 

- K~>4 

All terms in Eq. (3.1) are deduced the evolution law 
straightforward manipulations. 

To solve Eq. (3.1d) we use the ansatz 

(1.PS)' after 

YN=AB N-3, N > 2  (3.2) 

and reduce the infinite system (3.1d) to the following equations for the 
functions A(t) and B(t): 

d 
- -  A = 2A [2oB4(1 - B) - 2,(1 - -  B 3 ) ]  
dt 

d 

dt B = -20  B 

(3.3) 

The general solution to these equations has the form 

A = C j ( I - B ) 2 B  2"exp[2B+ B 2+ ~(1 - -10B3] ,  

B(t) = C2 e x p ( - 2 o t )  

= 2 t/2o 
(3.4) 
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where the constants C~ and C2 can be defined from initial data. One can 
further reduce Eqs. (3.1a)--(3.1c) to a closed system relating Yo(t)~ Yl(t), 
and Yz(t) and then solve these equations analytically. We omit the 
resulting explicit but rather cumbersome formulas. 

Let us now consider the approach to equilibrium for the alternating 
initial sequence Y~. Substituting the corresponding initial data A ( 0 ) = 0  
and B(0)= 1 into the exact solution (3.4), we obtain all constants 

C, = e x p [ - 3 -  3 ( 1 - p ) ] ,  C2= 1 (3.5) 

For the random start, we have A(0)= 1/64 and B(0)=  1/2. By 
inserting these initial data into (3.4), we obtain 

C , = 2 z U - 4 e x p [ - ~ - ~ ( 1 - # ) ] ,  C2=�89 (3.6) 

The approach to equilibrium appears to be exponential. 

4. C R Y S T A L L I Z A T I O N  M O D E L  

Turn now to the crystallization model which is dual to the phase 
separation model of Section 2. We consider a sequence of atoms of species 
A and B on the infinite line, in which nearest neighbor interchange can 
occur only if the portion of AB bonds is thereby increased. Using the 0--1 
representation introduced in Section 2, we see from the definition of the 
model that the only evolution occurs inside triplets. Moreover: 

(1.C) Any 010-triplet can evolve, 0 1 0 ~  111. 

(2.C) Other triplets cannot evolve further. 

Our crystallization model with RSA-type kinetics proves to be 
solvable. To demonstrate this, it is convenient to denote by Zs ,  N>_-1, a 
sequence of N recovering evolutionary triplets of the type 010 (e.g., 
0101010 means Z3). Then the master equation for the fraction of Zu's in 
a chain at time t, ZN(t), has the following form: 

d 
~ Z u  = - N Z u + 2  ~ Zu+K (4.1) 

K>~ 2 

All terms in Eq. (4.1) are simply deduced from the evolutionary rules (1.C) 
and (2.C). 

To solve the master equation, we again use the ansatz 

Zu = AB ~r (4.2) 
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where A(t) and B(t) are functions of time to be found. Substituting (4.2) 
into (4.1), we come to the reduced system 

d d ~A =2AB2(1 -B) -~, --B=dt -B (4.3) 

Solving Eq. (4.3) leads to 

A = const �9 (1 - B) 2 exp(2B), B = const ,  exp( - t) (4.4) 

First, we investigate the approach  to equilibrium for a r andom chain. 
Then the probabil i ty to meet ZN at t ime t = 0 is 

ZN(0) = (3 /4)22-N2 - N -  J (4.5) 

where the first factor 3/4 is a consequence of the boundary  conditions on 
every side of ZN [bounda ry  bond(s)  ai-e given by 0 or 11]; the second 
factor accounts for N units in a sequence ZN and the last factor accounts 
for N +  1 zeros in a sequence ZN. Thus the initial data  (4.5) are in 
agreement  with the ansatz (4.2) and they may  be rewritten as follows: 

A(0) = 9/32, B(0) = 1/4 (4.6) 

Combining  (4.4) and (4.6), we obtain 

z 1 
l [ 1 - - ~ e x p ( - - t ) ]  exp [eXP( 2 / )  -- l ] ,  B(t)=-~exp(--t) (4.7) A(t)=~ 

The degree of crystallization in our model  may  be measured by the 
fraction p(t) of bad bond, i.e., the fraction of zeros. All zeros outside of 
Zu's will survive, while other zeros may  disappear.  Calculating these loss 
terms yields a simple equat ion for p(t): 

d -~p=-2 ~ KZK=-ZAB2(I-B) -2 (4.8) 
K>~I 

Combining  (4.7) and (4.8), we obtain 

1 (4.9) p(t)=~exp [eXP(2t)-- I ] 

i.e., when t increases from zero to infinity, p(t) decreases from p ( 0 ) =  �89 to 
p(oo) = �89 exp ( - ' � 89  = 0.303265 . . . .  

Second, we investigate the approach  to equilibrium for an alternating, 
in 0-1 representation, chain 

...010101010101010 . . . . . . .  AABBAABBAABBAABB.. .  
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To define A(0) and B(0), we use obvious initial data 

and find 

AN(0 )=0  forall  N>~I, 

A(0) = 0, B(0) = I, 

Z NZN(O)= 1/2 (4.10) 
N>~I 

lira A(1 - B ) - 2 =  1/2 (4.11) 
t~0  

Combining (4.4) and (4.11), we find the exact solution 

A = � 8 9  B)2 e x p ( 2 B -  2), B ( t ) = e x p ( - t )  (4.12) 

Then we arrive at the following equation for the fraction p(t) of bad bonds 
(A-A or B-B): 

p(t) = �89 exp[2 e x p ( -  t ) -  2] (4.13) 

Thus we conclude that p(t) decreases from p(0) = �89 to p (m ) = i exp( - 2) = 
0.067668... when t increases from zero to infinity and that asymptotic 
decay appears to be exponential. 

Comparing (4.8) and (4.13) shows that the evolution to the final 
stationary state is strongly dependent on its initial state, i.e., an asymptotic 
distribution cannot be computed directly from the single requirement of 
stationarity in Eq. (4.1). The system, therefore, has an infinite number of 
stationary states, i.e., the kinetic model of crystallization is not ergodic. 

In closing, we note that an approach to equilibrium appears to be 
exponential independent of initial conditions. Indeed, by inspection of 
(4.1), one finds the universal asymptotic decay 

Z u ( t ) = C u e x p ( - N t ) +  ... at t>>l (4.14) 

with some nonuniversal constants CN. 

5. GENERALIZED C R Y S T A L L I Z A T I O N  M O D E L  

In this section we discuss a natural generalization of the model for 
crystallization at zero temperature. We will assume that the exchange of a 
pair of neighboring atoms that would cause neither inrichment nor dilution 
of good nearest-neighbor pairs is also possible and is performed with the 
probability e. Returning to the evolution laws (1.C) and (2.C), we conclude 
that any 011- or ll0-triplet can now evolve, 011 ~ l l0  or 110=~011, with 
the rate e. Thus, the RSA interpretation shows that the generalized model 
takes into account "diffusion" processes. 
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Contrary to the simple RSA case, studies of generalized RSA processes 
with diffusion have begun very recently, tT) Analytical results for generalized 
RSA processes are absent, while an approximate treatment tTI predicts 
interesting unexpected results, which must, however, be confirmed rigorously 
or numerically. 

In the present generalized crystallization model the addition of diffu- 
sion spoils the independent evolution of each Z N, and we have found no 
general solution. However, the case of very weak diffusion (e,~ 1) can be 
partly treated because the evolution may be divided into two stages. The 
first stage was investigated in the preceding section. To describe the 
evolution in the second stage, we introduce the scaled time 

T = e t  (5.1) 

and use the stationary states of the first stage as the initial data for the 
second one. Our goal here is a determination of the concentration of 
clusters of zeros (in the 0-1 representation) of length N at time t, Wu(t). 
Two basic elementary kinetic processes governing the evolution of Wu's 
can be depicted as follows: 

. . .  1 1 0 0 0 1 1 0 0 1 1 . . .  ~ . . .  1 1 0 0 1 1 0 0 0 1 1 . . .  

. . . 1 1 0 0 0 1 1 1 0 0 1 1 . . . = ~ . . . 1 1 0 0 1 1 0 1 0 0 1 1 . . .  

~...110011111011...  

(5.2a) 

(5.2b) 

The first step in the reaction (5.2b) occurs due to the diffusion process 
(5.2a), while the second happens instantly in terms of the scaled time T due 
to the reaction (1.C). The reaction scheme (5.2) may be symbolized as 
follows: 

WN--~ WM=:~ W N _  1 "~ I/Vm + I (5.3a) 

WN -]- WM =:~ W N -  | "]- WM - I (5.3b) 

Notice that the former reaction, (5.3a), explicitly shows that the 
generalized crystallization process is no longer irreversible, while the latter 
reaction, (5.3b), describes the irreversible part of the crystallization process. 

The basic theoretical approach to describing the reaction scheme (5.3) 
is based on rate equations. This is an approximation of a mean-field 
character, as fluctuations are ignored. Clusters are assumed to be dis- 
tributed homogeneously at all times throughout the system, i.e., there is 
perfect mixing. While the rate equation approach provides a useful and 
comprehensive account of a wide range of kinetic processes, recent results 
by a number of authors show that local spatial fluctuations which are 

822/74/5-6-18 
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ignored in a mean-field approximation will dominate the large-time 
reaction kinetics in low-dimensional systems, namely, at d <  d,., where d,. 
is an upper critical dimension (for a review, see, e.g., ref. 17). However, as 
will be seen later, dc is probably equal to 2 in our model because for some 
initial conditions the present model can be reduced to the annihilation 
model with known upper critical dimension de=2.  Therefore, we must 
treat the model outside the scope of mean-field approximation. 

Unfortunately, we have not succeeded in finding an exact treatment of 
our system of interacting clusters for arbitrary initial data. However, this 
may be done for particular initial conditions, e.g., for the alternating chain. 
The first stage of this process, which is described in Section 4, gives the 
initial conditions for the second stage 

W t ( T =  0) = p( t  = ~ ) = 0.067668... 

W N ( T = 0 ) = 0  for all N~>2 

Thus, in the second stage we start with defects but without domain 
walls. Furthermore, a simple analysis shows that the fusion reaction, 
WI + WI ~ W2, is now impossible because distances between any defects 
appears to be even. Accordingly, we have a system of defects which execute 
a random walk along a one-dimensional lattice and annihilate if they land 
on next-nearest-neighbor sites simultaneously. This reaction may be 
symbolized as D + D - - * O ,  and the system would evolve into a trivial, 
completely empty state in the long-time limit, T>> 1. Thus we see that for 
the alternating initial data the generalized crystallization process remains 
irreversible and the system reaches the close-parked configuration. So we 
rigorously confirm, although for a particular situation, the conclusion of 
Tarjus et al. (7) that in generalized RSA processes with diffusion a system 
should reach close-parked configurations. 

The upper critical dimension for the annihilation process is equal to 
2. (17-19) In one dimension, the problem of diffusive annihilation has been 
investigated extensively and the power-law decay, W~(T)  "~ (4nT) -~/2 at 
T>> 1, is known to be an exact result t2~ for the usual variant of a model 
where particles hop on nearest-neighbor sites and annihilate if they land on 
the same site. For the crystallization model with the alternating initial data, 
in the second stage, particles execute a random walk along the even-site 
sublattice and a small difference between the reaction rules also exists. 
However, it is clear that these modifications do not change the asymptotic 
results. From the above analysis, the asymptotic behavior of the defect 
density can be deduced: 

W I ( T )  ~- �89 = (16feet)-1/2 (5.4) 
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Similar behavior can be found for some other ordered initial conditions. 
For instance, the chain 

... AAAABBBBAAAABBBB... = . . .  000100010001000... 

simply evolves in the first stage 

Z~(t)--ze~ - ' ,  Z N ( t ) = 0  forall N~>2 

and defects with the density W, = 1/4 are produced at the end of this stage. 
The distance between any two neighboring defects is equal to 4 and they 
execute a random walk annihilate as for the alternating chain. For another 
ordered chain 

... AAAAABBBBBAAAAABBBBB . . . . . . .  0000100001000010000... 

the evolution in the first stage produces 2-clusters only, with the density 
W_, = 1/5 at the end of this stage. There are three elementary reactions in 
the system: elementary reactions in the system: a breakup of a 2-cluster 
onto two defects, left and right; an annihilation of some left defect and a 
right defect of the preceding 2-cluster; and a fusion of defects of a single 
cluster. The system consists of 1- and 2-clusters during a whole process of 
evolution. A simple analysis shows that the density of 2-clusters is negli- 
gible in comparison with the density of the defects at T>> 1 and we again 
obtain the asymptotic behavior (5.4) for the density of the defects. On the 
basis of these examples one can describe the evolution of all ordered 
lattices with an elementary cell of length (m + 3). The first stage is obvious 

Z , ( t ) = ( m + 3 ) - ~ e  ', Z u ( t ) = 0  forall  N>~2 

During the second stage the system consists of 1-, .... m-clusters. Thus 
asymptotically we again obtain preceding results, Eq. (5.4). 

To illustrate other possibilities, we consider the evolution of a lattice 
of defects with odd period. One can find that the annihilation process is 
impossible for these initial conditions. Consequently the "mass" of all 
clusters, i.e., the degree of crystallization, is conserved and a full crystalliza- 
tion cannot be achieved. Thus in these situations the conclusion of Tarjus 
et al. ~7~ that in generalized RSA processes with diffusion a system should 
reach close-parked configurations becomes invalid. 

6. S U M M A R Y  

We studied the kinetics of two simple zero-temperature models of a 
binary alloy on a one-dimensional lattice. For the first model, which 
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mimics a phase separation process, the nearest-neighbor exchange can 
occur if the portion of AB bonds is thereby decreased. The crystallization 
model is defined by the opposite evolution law. Both models prove to be 
soluble and many features are computed analytically. When a diffusion is 
taken into account, i.e., the nearest-neighbor exchange is performed if 
the portion of AB bonds remains invariable, the behavior is drastically 
changed even for infinitely weak diffusion. 

In the absence of diffusion, the evolution to the final stationary states 
appears to be exponential and strongly dependent on the initial data. There 
are infinitely many stationary states, i.e., these kinetic models are not 
ergodic. Assuming the diffusion to be small, we divided the evolution into 
a first stage in which diffusion is negligible and a second one in which the 
diffusion plays a crucial role. We observed a very rich kinetic behavior 
strongly dependent on the initial data. For an alternating chain we have 
succeeded in describing the kinetics of crystallization in the last stage by 
mapping our crystallization process onto the one-dimensional annihilation 
process. For these ordered chains we found that the average crystalline size 
L scales with time as t-1/2 and confirmed the conclusion of Tarjus et  al. ~7~ 

that in generalized RSA processes with diffusion a system should reach 
close-parked configurations. We also found initial conditions for which the 
above conclusion is violated. 

Finally we note that very recently exact results for the phase separation 
model on a one-dimensional lattice have been obtained by Privman~25~; 
exact solution of the phase separation model on the Bethe lattice has been 
found in ref. 26. 
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